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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity
worldwide [1]. While cardiac hypertrophy is initially an adaptive response to increased
workload or stress, when induced by pathological cues, the response can decompensate,
resulting in a decline in cardiac function and progression to heart failure. As cardiomyocytes
(CM) are terminally differentiated, hypertrophy of the cardiac muscle is mediated by growth
of CM and not through their proliferation [2].

Signalling pathways downstream of G-protein-coupled receptors (GPCR), such as
endothelin-1 (ET-1), angiotensin II (AngII) and adrenergic receptors, play a fundamental
role in the induction of pathological hypertrophic remodelling [3–6]. Mitogen-activated
protein kinases (MAPK) are of particular importance in mediating the pro-hypertrophic
actions, GPCR signalling contributing to regulation of protein synthesis, cell survival,
metabolism and gene transcription [6,7]. MAPKs fall into four major families—the extra-
cellular regulated kinases 1 and 2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinases 1 and
two (JNK1/2) and ERK5 [6,7]. All limbs of this kinase family are involved in regulating
hypertrophic remodelling [6,8,9]. During cardiac hypertrophy, MAPK pathways regulate
transcription via phosphorylation-dependent modulation of transcription factors such as
NFAT, Elk, SRF and GATA4 [10]. Preceding the induction of expression of genes associated
with the hypertrophic state, hypertrophic cues such as pressure overload and exposure to
neurohormonal agonists stimulate a MAPK-dependent rapid activation of an immediate
early gene (IEG) response [11–14]. This IEG response is initiated through phosphorylation-
dependent activation of the activator protein 1 (AP-1) transcription factor [14–17]. The
AP-1 transcription factor is a dimeric complex formed by members of the FOS (c-FOS,
FOSB, FRA-1 and FRA-2), Jun (JUNB, JUND and c-JUN), activating transcription factor
(ATF; ATFa, ATF2, LRF1/ATF3, ATF4 and B-ATF) and MAF families of basic-leucine zipper
transcription factors, which are themselves induced as part of the IEG response [17–19].
AP-1 transcription factors also act though forming heteromeric interactions with other
transcription factors such as NF�B and NFAT, with known roles in CM [20,21]. In addition
to showing hypertrophy-related alterations in their activation and expression, a functional
role for AP-1 factors in cardiac hypertrophic remodelling is described. While AP-1 factors
are generally required for hypertrophic responses in vitro [22,23], in vivo roles of different
AP-1 factors are more complex. For example, in vivo deletion of JunD or of c-Jun results in
a loss of the initial adaptive response to hypertrophic stimuli and an exacerbation of the
deleterious remodelling to pressure overload [24–26]. Contributing to this phenotype is a
reduced upregulation of sarcomeric proteins, enhanced CM apoptosis and fibrosis. c-Fos
deletion is without effect, however [26]. Contrastingly, JunD overexpression results in ven-
tricular dilation and reduced contractility [25], although in vitro studies suggest that JunD
suppresses hypertrophic responses by inhibiting the action of c-Fos and c-Jun [22]. Taken
together, these reports demonstrate the important and complex functions of AP-1 transcrip-
tion factors in hypertrophic remodelling, particularly in the early adaptive responses to
pathological cues.

Although ERK activation is highly correlated with induction of IEG expression during
CM hypertrophic responses [11,27], the mechanism linking these events is not resolved.
In other tissues however, IEG expression is induced following MAPK pathway activation
via a mechanism involving phosphorylation of serines 10 and 28 (H3S10 and H3S28) in
the histone H3 NH2-terminal tail at IEG loci, termed the nucleosomal response [28,29].
Phosphorylated histone H3 creates a permissive environment for induction of transcription



Cells 2022, 11, 604 3 of 27

during the nucleosomal response, histone H3 is phosphorylated by the mitogen and stress-
activated kinases (MSK1/2) [30–33]. MSKs are nuclear-localised kinases that are activated
by an initial phosphorylation by upstream MAPK including ERK1/2 and subsequent
autophosphorylation [34,35]. MSK1 and the highly homologous kinase MSK2 are both
expressed in the heart and are activated in response to hypertrophic stimuli [36–
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2.4. Preparation of Neonatal Rat Ventricular Cardiomyocytes (NRVMs)

Primary neonatal rat ventricular CM (NRVMs) were isolated from 3–4-day-old male
and female Wistar pups and cultured as described previously [44]. Cultures were >95%
pure. Adenoviral infections were as previously described [44]. Agonist treatments diluted
in serum-free medium were applied 24 h post-infection with adenovirus. Endothelin-1
(ET-1), Iso and PD184352 (PD) were used at final concentrations of 100 nM, 10 nM and
1 �M, respectively. PD was applied for 30 min prior to hypertrophic agonist application
(ET-1/Iso). Control cellular experiments (no treatment) were treated with the same volume
of vehicle only (DMSO for ET-1 and PD).

2.5. Isolation and Culture of Adult Rat Ventricular Cardiomyocytes (ARVMs)

Male Wistar rats (Harlan; ~200 g) were anaesthetised by CO2 inhalation and sacrificed
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heart was immediately removed for dissection. Whole hearts were removed and placed in
ice-cold PBS briefly to remove excess blood, dissected using a sterile surgical scalpel in PBS
on ice and weighed on a microbalance before snap-freezing in liquid nitrogen and being
stored at �80 �C.

2.17. Adenoviral Methods

Adenoviruses were produced and amplified in HEK293 cells and purified as previ-
ously described [44]. Adenoviruses to express the WT and catalytically dead D565A mutant
(DN) of MSK1 were generated using the AdEasy method by sub-cloning the cDNA for
MSK1 or its mutant from a pCMV5 backbone (kindly provided by Prof D Alessi, University
of Dundee) into pShuttle CMV [39]. PacI-digested recombinant plasmids were transfected
into HEK293 cells and crude adenovirus was harvested after 10–14 days. Adenoviruses
for dominant negative (DN)-Jun and AP-1 luciferase were purchased from Vector Biolabs
(Malvern, PA, USA). All viruses were amplified in HEK293 cells, purified using the Viva-
pure Adenopack 100 (Sartorius, Gottingen, Germany) and titrated by end-point dilution in
HEK293 cells.

2.18. Analysis of Luciferase Reporter Activity

The AP-1 luciferase reporter was expressed using an adenoviral vector and luciferase
activity was determined using a luciferase assay kit from Promega (Madison, WI, USA) as
previously described [42].

2.19. Small Interfering RNA (siRNA) Knockdown

Stealth™ siRNAs were purchased from Invitrogen. To achieve sufficient knock-
down of Msk1 or Brg1
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Figure 1. Neurohumoral signalling-induced ERK1/2 actiFigure 1. Neurohumoral signalling-induced ERK1/2 activation results in histone H3S28 phospho-
rylation at IEG promoters. (A
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3.2. MSK1/2 Is Activated following ET-1 Stimulation in an ERK1/2 Dependent Manner
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Figure 2. Activated MSK is required for histone H3S28 phosphorylation, recruitment of BRG1 to 
chromatin and IEG induction in CM. (A). Immunoblot showing levels of phosphorylated (activated) 
MSK in NRVMs +/− PD and stimulated +/− ET-1 for 10 min. pMSK is normalised to α-Actinin (α-
Act) as a loading control. Left: Representative immunoblot. Right: Quantification of pMSK relative 

Figure 2. Activated MSK is required for histone H3S28 phosphorylation, recruitment of BRG1 to
chromatin and IEG induction in CM. (A). Immunoblot showing levels of phosphorylated (activated)
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MSK in NRVMs � PD and stimulated � ET-1 for 10 min. pMSK is normalised to �-Actinin (�-Act)
as a loading control. Left: Representative immunoblot. Right: Quantification of pMSK relative to
control-vehicle-treated cells. N = 5. (B). Confocal immunofluorescence analysis of pMSK in CM in
ventricular cardiac sections prepared from rats infused with ET-1 or Iso for 15 min. CM nuclei were
demarcated by pericentriolar material 1 (PCM-1; in magenta) perinuclear staining. Nuclei are stained
with DAPI (blue) and pMSK in green. Left: Quantification of nuclear pMSK in PCM-1-positive
nuclei. N = 4, 200–400 CM nuclei per sample. Right: Confocal images of heart sections from animals
treated as indicated. Scale bar = 20 �m. (C). Representative confocal images of immunostained
NRVMs showing expression of FLAG-tagged WT-MSK and DN-MSK adenoviruses (AdV). Nuclei are
stained with DAPI (blue), Beta-Actin in green and FLAG-tagged MSK in red. (D). Immunoblotting
for pMSK, pERK and FLAG-tagged MSK AdV in NRVMs infected with either empty vector (EV),
WT-MSK1 AdV or DN-MSK1 AdV and treated � 15 min with ET-1, normalised to GAPDH as a
loading control. Left: Representative immunoblot. Right: Quantification of immunoblot, relative to
EV. N = 5. (E). Immunoblotting for phosphorylated histone H3S28 in NRVMs infected with either
empty vector (EV), WT-MSK1 AdV or DN-MSK1 AdV treated � 15 min with ET-1, normalised to
total histone H3 (T-H3) as a loading control. Left: Representative immunoblot. Right: Quantification
of immunoblot data. N = 6. (F). Effect of DN-MSK expression on c-Fos expression in NRVMs treated
with ET-1 for 10 min. c-Fos expression was determined by RT-qPCR. Data are presented relative to
empty vector. For WT-MSK data (left), EV ctrl and WT-MSK ctrl, N = 10, EV ET-1 and WT-MSK ET-1,
N = 6. For DN-MSK data (right), N = 6. (G). Analysis of hypertrophic responses in NRVMs infected
with EV or DN-MSK1 AdV treated � ET-1 for 24 h. Left: RT-qPCR expression analysis of Nppa/Anf
mRNA in NRVMs. Data are presented relative to EV untreated cells. For EV ctrl, EV ET-1, WT-MSK
ctrl and WT-MSK ET-1, N = 8. For DN-MSK ctrl and DN-MSK ET-1, N = 6. Right: Cell area (
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3.4. MSK1-Mediated Phosphorylation of H3S28 Recruits BRG1, a Component of the BAF60
Chromatin Remodelling Complex to IEG Loci

IEG induction and pathological cardiac remodelling involves the action of Brahma-
related gene-1(BRG1; encoded by gene
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Figure 3. IEG activation and cardiomyocyte hypertrophy is suppressed in vivo in MSK1/2 KO mice. 
(A). RT-qPCR analysis of Msk1 (Left) and Msk2 (Right) mRNA expression in left ventricle from 
Figure 3. IEG activation and cardiomyocyte hypertrophy is suppressed in vivo in MSK1/2 KO mice.
(A). RT-qPCR analysis of Msk1 (Left) and Msk2 (Right) mRNA expression in left ventricle from Msk1/2
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Together, these data show conservation of the MSK pathway to IEG induction in
human hearts and support our hypothesis that the MSK/pH3S28/IEG axis is necessary to
bring about the initial stages of the CM pathological hypertrophic response (Figure 5).

Figure 5. Graphical abstract of main findings of this study indicating pathway by which MSK couples
GPCR activation with IEG induction during the cardiac hypertrophic response.

4. Discussion

MAPK pathway regulation of the expression and activity of IEGs is the key to stress-
mediated induction of cardiac hypertrophic responses. Here we identified MSK1/2, a
kinase-activated downstream of ERK1/2, as being necessary for the initiation of IEG
expression in response to pathological hypertrophic cues. MSK1/2 elicited this response
through phosphorylation of histone H3S28 allowing recruitment of the ATP-dependent
chromatin remodeller, BRG1. In the absence of this response, gene expression changes
and tissue remodelling associated with cardiac hypertrophy was attenuated. Notably, live-
cell functional assays and analysis of post-mortem human hypertrophic hearts revealed
conservation of this mechanism in humans. These data are summarised in the cartoon in
Figure 5.

MSK1/2-mediated phosphorylation of histone H3S10 and H3S28 transduces MAPK
activation in response to mitogenic stimulation activation to induction of IEG expression in
a wide range of tissues [32,33,55,57]. Until now, a mechanism involving MSKs acting as
histone kinases contributing to the induction of IEG and of hypertrophic gene expression
via a nucleosomal response has not been demonstrated in CM. MSKs have been reported
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ERK, results in cardiomyopathy, however [62]. Notably, loss of ERK2, which represents
50–70% of ERK activity in the heart, attenuates the initial compensatory phase of the
hypertrophic response and causes a direct progression to a cardiomyopathic phenotype
associated with substantial CM death [60]. Surprisingly, conditional deletion of both ERK
alleles does not prevent pathological hypertrophic growth [63]. ERK1/2 likely makes
different contributions to the different forms of hypertrophy—while ERK1/2 mediates
concentric growth responses to stimulus, it prevents eccentric growth [7,63,64]. As we
suggest for MSKs, ERK2 is not required for physiological cardiac remodelling in response
to 4 weeks of swim training, indicating independent pathways for adaptive hypertrophy in
response to pathological or physiological stimuli [60]. A similar requirement for the acute
adaptive hypertrophic growth and repression of maladaptive growth is reported for c-Jun
NH2 terminal kinase (JNK1) [65]. Through deletion of this kinase, mice exhibit a loss of
adaptive hypertrophic responses and subsequent direct progression to cardiac dilation [65].
Moreover, MKK4, which lies upstream of JNK and p38MAPK, is also required for this
hypertrophic response [5]. Consistent with these actions of JNK, c-Jun acts in a protective
manner, preventing maladaptive responses to stress [26]. While JunD also protects CM
from maladaptive remodelling, its activity is decreased in pathology, leading to a reduction
in AP-1 complexes in which it participates, thereby resulting in a greater influence of other
AP-1 factors on downstream signalling [24,25]. As a consequence, pathological cardiac
remodelling develops. Further contributing to any differences between the effects of loss
of MSK activity on IEG signalling compared to knockout of individual AP-1 factors or
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Notably, CaMKII contributed to a delayed but sustained elevation of global pH3S28 but
not to the early peak in pH3S28 observed in response to catecholaminergic stimulation [70].
Our description of a role for MSK in the phosphorylation of histone H3S28 at IEG loci in
the minutes following agonist stimulation may suggest a model whereby MSKs mediate
the induction of IEGs during hypertrophy whereas CaMKII-dependent phosphorylation
of histone H3S28 is involved in the control of the expression of genes involved in later
stages of the hypertrophic response. While CaMKII may indeed play a role at certain gene
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11040604/s1, Figure S1, Supplementary Figure S1: IEG
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