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Background
Circadian variation of gene expression in the liver is essential to temporally coordinate



liver indicates that conformation dynamics at different genomic scales are coupled with

circadian transcriptional oscillations.

Results
Circadian A/B chromatin compartments switch between open and closed configurations

throughout the day

To study global genome architecture during a circadian cycle, we performed in-nucleus

Hi-C (see “Methods”) on mouse adult liver at four different timepoints of the circadian

cycle (ZT0, 6, 12 and 18), with ZT0 and ZT12 being the start of the light and dark

phase, respectively, in three biological replicates. Samples of individual livers were proc-

essed in parallel for RNA-seq. We produced high-quality Hi-C data sets with a high

percentage of valid pairs (~ 80%), low PCR duplicates (less than 2%), and high cis:trans

interaction ratios obtained (~ 80:20%) (Table S1). In total, we obtained ~ 2 billion valid

Hi-C read pairs from mouse adult liver across a circadian cycle (Table S1).

To detect “open,” transcriptionally active and “closed,” silent genomic compartments

(A and B compartments, respectively), we performed PCA analysis on Hi-C data at dif-

ferent timepoints throughout the circadian cycle, at 100-kb bin resolution. PCA analysis

is used to analyze high dimensional data and we redefine them, with as few dimensions

as possible that explain most of the variance in the data. As such, the 1st principal

component (PC1) will explain the majority of the variance, followed by the second

component (PC2) and so forth. When applying PCA to the normalized contact Hi-C

matrix from individual chromosomes, important features can be identified. For most

chromosomes, the PC1 value reflects two distinct interaction compartments that cor-

respond to open and closed chromatin [10]. Changes in chromatin compartments have

been associated with changes in transcription and chromatin states during cell differen-

tiation and mouse early development [11, 12]. As expected, PC1 values partitioned the

liver genome into chromatin compartments (Fig. 1a,b, Additional file 1: Figure S1A,B).

We then compared the eigenvectors of the different timepoints and identified changes

in the sign of regional PC1 values, indicative of compartment switching between all

timepoint pairs (Fig. 1a,b, individual replicates and merged replicates, respectively,

Additional file 1: Figure S1C one-way ANOVA p value < 2e − 16). These genomic

regions, termed oscillatory chromatin compartments (OCCs) spanned 440.4 Mb of the

mouse genome. The rest of the genome (82.7%) retained the same compartment

identity during the 24-h cycle (Additional file 1: Figure S1A,B individual replicates and

merged replicates, respectively, S1D). We found OCCs with compartment assignments

ZT0 = A, ZT6 = A, ZT12 = B, ZT18 = A (AABA) being the most abundant type in the

genome covering 194.7 Mb (Additional file 1: Figure S1E).



expected oscillatory expression pattern for examples of both core-clock and output cir-

cadian genes in the liver (Additional file 2: Figure S2C,F). Gene Ontology and KEGG

pathway analysis identified circadian rhythm and metabolism as significantly enriched

categories in our identified circadian gene set (Additional file 2: Figure S2D,E)





properties, independent of the timepoint examined (Fig. 2b right panel and Additional



either ZT0 or ZT12 Hi-C data suggesting large agreement of CTCF chromatin

occupancy and insulation properties between mESCs and adult liver tissue

(Additional file 4







dots represent circadian gene promoters). Nevertheless, circadian promoters establish

significantly more contacts among them compared to non-circadian gene promoters

(Additional file 6: Figure S6B. Above, comparison of the number of edges formed be-

tween circadian promoters compared to a random set of non-circadian gene promoters.

Below, Z-scores compared to the random sampling of non-circadian promoters). Next

we looked at the reads supporting significant interactions between circadian gene pro-

moters in contrasts with interactions between non circadian gene promoters. The result

shows that circadian promoter-promoter contacts are more robust compared to non-

circadian promoter-promoter contacts (Additional file 6: Figure S6C, p values < 0.001,

Mann-Whitney test). Finally, we compared the time of maximal mRNA abundance of



corresponding to genes oscillating at the intronic level (see “Methods”), we found a sig-

nificant preference for circadian gene promoters to contact with enhancers both de-

tected by eRNA transcription or histone modifications, as well as regions occupied by

core clock TF (Fig. 3





The Tcfap2c/AP-2 gamma binding motif was found to be highly enriched at dynamic

interacting regions of circadian gene promoters. In the liver, Tcfap2c has been associ-

ated with repression of fatty acid synthesis pathways [37] and was identified as a key

TF involved in lipid droplets biogenesis [38]. Fos:Jun/AP1 binding motifs were found in

genomic regions forming stable contacts with circadian promoters. AP1 factors are a

well-characterized immediate-early transcription factors induced in response to signals

in the serum and that regulate the expression of circadian genes in liver and cultured

cells [39] as well as the suprachiasmatic nucleus [40–42]. Recently, AP-1 was shown to

bring together key genes and enhancers through stable and dynamic loops during

macrophage development bringing together key macrophage genes and enhancers [43].

In summary, a set of DNA binding motifs for distinct liver nuclear receptors and im-

mediate early genes are enriched in regions contacting circadian promoters and could

function in the wiring of the circadian promoter 3D interactome in the liver.

Circadian gene promoters interact with diurnal and nocturnal enhancers in the nuclear

space

A set of enhancers are transcribed in a circadian fashion in the mouse liver [27]. We

found that these enhancers preferentially contact circadian gene promoters, suggesting

that rhythmically transcribed genomic regions, protein-coding and non-coding, interact

with each other in the nuclear space (Fig. 4a). This is also true for our subset of circa-

dian genes oscillating at the intronic level (see “Methods”) and for circadian genes de-

tected through GRO-seq [27] reflecting primary transcriptional oscillation (Fig. 4b,c).

We then compared the transcriptional phases between promoters of circadian genes

and their corresponding contacted enhancer elements with rhythmic transcription. To

do so, we separated the circadian gene promoters into diurnal and nocturnal depending

on their transcriptional acrophase and then analyzed the time of maximal RNA expres-

sion of their contacted enhancer elements. We found a significant contact preference

between diurnal promoters and diurnal enhancers as well as nocturnal promoters and

nocturnal enhancers (Fig. 4d, left). These preferences were more pronounced when

analyzing our circadian intronic gene set reflecting primary transcription (see

(See figure on previous page.)
Fig. 4 Transcriptional phase coherence between circadian genes and transcribed enhancers and the core-
clock circadian genes display highly dynamic chromatin contacts. a Circadian gene promoter observed and
expected contacts with enhancers producing eRNA rhythmically during the day (p value < 0.0001, t test). b
Circadian genes oscillating at the intronic level observed and expected contacts with enhancers producing
eRNAs rhythmically during the day (p value < 0.0001, t test). c Observed and expected contacts of circadian
gene promoters detected through GRO-seq with enhancers producing eRNAs rhythmically during the day
(p value < 0.0001, t test). d Phase distribution of eRNAs produced from enhancers contacting all diurnal and
nocturnal circadian promoters (left), circadian genes oscillating at the intronic level (centre) and circadian
genes detected by GRO-seq (right) (all p values < 0.001, Wilcoxon ranked sum test). e Partial virtual 4C
landscape of the Rnf125 gene promoter at the four timepoints during the day. Acrophase is written next to
the gene name. Significant contacts with enhancers producing oscillatory eRNA are shown. The majority of
the eRNAs present a peak in transcription at ZT0 as Rnf125 does. Genomic tracks show significant contacts
as arcs and chromatin features including liver H3K4me3, H3K4me1, H3K27ac, DNaseI, eRNAs, and TADs. f
Number of total significant interactions for core clock circadian gene promoters and a random control set
of non-core-clock circadian gene promoters (p value < 0.0001, Mann-Whitney test). g Proportion of dynamic
contacts for core clock genes and a random control set of non-core-clock circadian gene promoters (p
value < 0.0001, Mann-Whitney test). h, i Virtual 4C for Arntl and Nr1d1 core clock circadian gene promoters
at all timepoints during the day. Features displayed are the same as described in e
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“Methods”) (Fig. 4d, center) or detected by GRO-seq (Fig. 4d, right, all p values <

0.0001 Wilcoxon signed rank test). For example, the Rnf125 circadian gene pro-

moter with peak transcription at ZT0 contacts 12 rhythmically expressed enhancers

with acrophases between 19 and 1 h during the circadian cycle. Furthermore, as it

can be observed, the number of contacts with the enhancers, increase during the

acrophase (Fig. 4e).

The core clock gene promoter contacts

Finally, we focused on the genomic interactions formed by circadian core clock gene

promoters including Npas2, Clock, Arntl, Cry1, Cry2, Per1, Per2, Rorc, Nr1d1, and

Nr1d2 as defined by [44]. Notably, all core clock genes displayed fewer overall contacts

compared to a random set of the same number of other circadian genes in the liver (12

vs 19.6 mean number of contacts for core-clock vs other circadian genes, Fig. 4f, p <

0.0001, t test). However, the contacts formed by the core clock gene promoters were

more dynamic than a random set of the same number of contacts for other circadian

genes in the liver (42.3% vs 26.8% mean proportion of dynamic contacts for core clock

vs other circadian genes, Fig. 4g, p < 0.0001, t test). For instance, the Arntl circadian

gene promoter engages in contacts with two enhancer elements at ZT18, the time

when Arntl expression increases, in three contacts at ZT0, at time of maximal tran-

scriptional output, and does not engage in contacts at either ZT6 or ZT12, when Arntl1

transcription decreases (Fig. 4h, see Additional file 3: Figure S3 for the expression pro-

file). The Nr1d1 gene promoter engages in more contacts at the gene’s maximal time

of expression, around ZT6 (Fig. 4i, see Additional file 3: Figure S3 for the expression

profile). In contrast to core clock contact profiles (additional examples are shown for

Rorc, Nr1d2, Npas2, and Per2 (Additional file 7: Figure S7A-D, see Additional file 3:

Figure S3 for expression profiles), promoters of circadian output genes engage in nu-

merous contacts that are constant during the day as exemplified by Dhr3 and Ppp1r3c

gene promoters (Additional file 7



and cell cycle [11, 12, 45]. However, our results reveal that dynamic changes between

compartment states occur also within hours and without cells dividing or changing

their identity (Fig. 5).

Inside cTADs, circadian genes tend to be alone or sharing the TAD with other circa-

dian genes and regulatory elements that are transcribed at similar times during the day,



circadian genes in the liver (Fig. 5). This is in line with recent candidate-scale 4C

chromosome conformation capture experiments for two core clock and output genes

[46



Promoter Capture in nucleus Hi-C (Chi-C)

Promoter Capture was performed as previously described [21–23]. Briefly, Biotinylated

120-mer RNA baits were designed to target both ends of HindIII restriction fragments

overlapping the Ensembl promoters of protein-coding and noncoding transcripts and

UCEs as described in detail in [22]. Promoter Capture was carried out using in nucleus

Hi-C libraries derived from three biological replicates at ZT0 0, 6, 12, and 18 with the

SureSelect target enrichment system and the biotinylated RNA bait library according to

the manufacturer’s instructions (Agilent Technologies). After library enrichment, a

post-capture PCR amplification step was carried out using the PE PCR 1.0 and PE PCR

2.0 primers (Illumina) with 4–6 PCR amplification cycles as required. In nucleus Hi-C

and CHi-C libraries were sequenced on the Illumina HiSeq 2000 platform.

ChIP-seq

For ChIP-seq, liver tissue for two biological replicates at ZT0 and ZT12 was dissected as

processed as for Hi-C and then fixed in 1% formaldehyde for 5 min. Chromatin immuno-

precipitation was performed as described [21] using 10 μg of α-CTCF (Millipore, 07-729).

DNA was purified using Zymo Research DNA purification columns. Sequencing libraries

were prepared with the NEBNext ChIP-seq library prep kit (NEB) according to the manu-

facturer’s instructions. DNA was purified using AMPure beads (Agencourt). For quantita-

tive chromatin immunoprecipitation experiments (ChIP-qPCR), liver tissue, collected at

ZT0, ZT6, ZT12, and ZT18 per duplicate, was fixed with a 1% formaldehyde for 10 min.



Metaplots The metaplots were created using python custom scripts. Briefly, the script

takes a feature of interest and calculates the frequency of interactions around it using

as input the KR normalized Obs/Exp Hi-C matrices at different resolutions (10, 25, or

50 kb) from different timepoints (ZT0,6,12,18). The final metaplot is the median value

of all the plots for the list of anchors. For the TAD-anchored metaplots, Hi-C normal-

ized matrices at 50 kb resolution were used. Each TAD (see TAD calling) was scaled to

fit into 5 bins, and only 1000 TADs from all datasets and using all chromosomes were

randomly chosen to reduce computing time. For the CTCF- anchored metaplots, Hi-C

normalized matrices at 10 kb resolution were used. Each CTCF peak (see ChIP-Seq

analysis) was scaled to fit into a single bin, and only 1000 CTCF peaks identified at

ZT0 and ZT12 were randomly chosen to reduce computing time. The matrices gener-

ated were plotted using heatmap.2 from the package plots.

TAD calling

For all timepoints, we retrieved Knight-Ruiz normalized contact matrices from Juicer

for all chromosomes at 25 kb and 50 kb resolution. TADs were identified using TAD-

tool [50] with the insulation score algorithm. To find appropriate parameters for TAD

identification, we called TADs for chromosome 1 across all timepoints using contact

matrices at 25 kb and 50 kb resolution and a window size of 100, 150, 155, 175, 195,

and 200 kb over threshold values from 70 to 200. For all data sets at 50 kb resolution,

we called TADs with a window size value of 200 kb and a threshold value of 140 while

for all data sets at 25 kb resolution, we called TADs with a window size value of 100 kb

and a threshold value of 76. We found that these parameters show good agreement be-

tween identified TADs and visual inspection of Hi-C datasets in Juicer. Of note, visual

inspection of Hi-C datasets with TADs identified at 25 kb resolution reveals that these

represent sub-TADs contained within TADs identified at 50 kb resolution.

TAD analysis



module of Intervene [51]. A TAD was considered shared between timepoints if more

than 80% of the genomic domain region overlapped with a domain from a different Hi-

C data set.

Compartment analysis

Compartments were identified applying PCA to the normalized interaction matrices

at a 100 kb resolution using Juicer [48]. PCA1 was used to assign A and B com-

partments. To verify the reproducibility of the compartment call, the PCA analysis

was applied on the separate replicates and just the merged data was used for

downstream analysis. A custom script and publicly available ChIP-seq BAM files

for H3K4me3 [13] were used to set the sign to the compartments identified by

Juicer. A total of ~ 20,000 compartments were identified at each timepoint. We

identified significantly changing compartments as those genomic regions with a

change in PCA1 across different timepoints consistently in the three biological rep-

licates through a one-way ANOVA test.

Transcription in A and B compartments To relate compartments A and B with tran-

scription, we calculated the log2 RPM (reads per million) values for all regions assigned

to compartments A and B per timepoint (ZT0,6,12,18) using SeqMonk (https://www.

bioinformatics.babraham.ac.uk/projects/seqmonk/) and RNA-seq BAM files (see “RNA-

seq data processing”) per timepoint as input and to applied a Kruskal Wallis test for all

compartments and a Mann-Whitney test for OCCs. The distribution of log2 RPM

values per compartment type at each timepoint is presented as violin plots.

Correlation with histone marks To relate changes in compartment status with the

enrichment of histone post-translational modifications, we calculated the RPM (reads

per million) values for all regions assigned to compartment A and B per timepoint

(ZT0,6,12,18) using SeqMonk and publicly available ChIP-seq datasets for the histone

post-translational modifications H3K4me3 and H3K4me1 [28] per timepoint as input

and applied a one-way ANOVA test and a Tukey post hoc test.

Correlation with HDAC3 To relate changes in compartment status with the enrich-

ment of HDAC3, we calculated the log2 RPM (reads per million) values for all regions

assigned to Compartment A at ZT0 and that change to Compartment B at Z12 using

SeqMonk and publicly available ChIP-seq datasets for the histone deacetylase HDAC3

[52] and applied a Wilcoxon test.

Promoter CHi-C

The sequenced reads were processed using HiCUP [47]. The filtering and identifi-

cation of significant interactions were performed with CHiCAGO [24]. To iden-

tify differential interactions, the script implemented by [21] was used. This script

can identify the differential interactions from a Promoter Capture Hi-C dataset,

using the edgeR package [53] to statistically quantify changes in reads for the in-

teractions. To increase the confidence in dynamic interactions, we filtered the

dataset only including baits overlapping circadian genes. To account for the

Furlan-Magaril et al. Genome Biology          (2021) 22:162 Page 19 of 27

https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/


distance bias in the read count, we also divided the CHi-C interactions into

greater or less than 150 kb groups. These preliminary results were filtered by

FDR and fold change; both distance regimes were combined. To plot long-range

i n t e r a c t i on s , w e u s ed the Wash ing ton Ep i g e nome Browse r (h t t p : / /

epigenomegateway.wustl.edu/browser/) using the mouse genome version mm9

and as input properly formatted CHiCAGO output files.

Characterization of interacting regions To characterize the type of genomic element

that promoters contact derived from our Promoter CHi-C, we calculated the observed/

expected number of overlaps between the other ends (the genomic segment interacting

with a promoter) and a set of genomic regions occupied by Transcription Factors or

enriched for histone post-translational modifications using a custom python script. The

http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/


cycle) [27] as well as the promoter of the CHi-C datasets using our RNA-seq analysis.

To make eRNA phases [27] more comparable to the circadian promoters identified by

our RNA-seq analysis, we grouped them into eight groups each containing three time-

points. First, we mapped the osceRNAs to the other ends of the CHi-C, then retrieved

the bait fragment associated with that eRNA and filtered the fragments overlapping

with the set of circadian promoters identified by our RNA-seq analysis. Then, we di-

http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/


view). Bam files were sorted (samtools sort) and indexed (samtools index). Dupli-

cates were removed with Pickard. Bam files were imported to deepTools v3.3.1

[58] to create signal tracks with bamCovera
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Additional file 13: Table S4. Promoter Capture Hi-C statistics. HiCUP summary results for independent P- CHi-C
replicates and significant interactions detected with CHiCAGO.

Additional file 14: Table S5. Transcription factor DNA binding motif enrichment analysis. This table contains the
information from all time points for both dynamic and stable interactions separately.
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